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Derivation of series expansions for a study of percolation 
processes 
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Wheatstone Physics Laboratory, King's College, University of London, Strand, London 
WC2R 2LS, UK 

Received 18 December 1985 

Abstract. The derivation of series expansions for a study of percolation processes for both 
site and bond mixtures is reviewed. For the bond problem, low density expansions for the 
mean size of clusters on the simple cubic and body-centred cubic lattices are given through 
pI4. High density expansions for the mean number and size of finite clusters and the 
percolation probability are given for the simple cubic through q4' and for the body-centred 
cubic through q6'.  

1. Introduction 

In this paper we review the derivation of series expansions that are used to study 
percolation processes in site and bond mixtures. We assume a general familiarity with 
the problem; there are reviews by Shante and Kirkpatrick (1971), Essam (1971, 1972, 
1980), Kirkpatrick (1973), de Gennes (1976), Welsh (1977), Wu (1978), Stauffer (1979) 
and Domb (1983). Sykes and Glen (1976) and Sykes et al (1976a, b, c) (hereafter 
referred to as I*-IV* respectively) derived series expansions for the more usual crystal 
lattices. They used the technique of perimeter polynomials introduced by Domb 
(1959); for an elementary introduction reference should be made to I*, § 2. Recently, 
Sykes (1986a, b, c, d) and Sykes and Wilkinson (1986) (hereafter referred to as I**-V** 
respectively) have used partial generating functions and exploited sublattice symmetry 
to provide new data for bond perimeter polynomials and the expansion of the mean 
number of clusters in site mixtures for the simple cubic and body-centred cubic lattices. 
We use these new data to derive extended series expansions for the mean size of finite 
clusters at high and low densities and also for the percolation probability. We begin 
by treating both site and bond mixtures together. The starting point of Domb's treatment 
is to consider the expectation of clusters of a certain size. For the site problem a 
natural measure of the size of a cluster is the number of its sites; in early work on the 
bond problem the measure was usually taken to be the number of its bonds. Essam 
and Sykes (1966) noticed that a simplification often resulted if, for bond mixtures, the 
bonds were primarily considered as connections between sites. They introduced the 
null-cluster convention under which an isolated site (that is, one with no incident bonds) 
is also treated as a cluster. Later, Essam (1971) in his studies of the pair connectedness 
developed this approach further and measured the size of a bond cluster by the number 
of its sites. 

0305-4470/86/163415 + 10$02.50 @ 1986 The Institute of Physics 3415 
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We allow for both these conventions by generalising the method used in I*-IV* 
and denoting the expectation (or mean number) per lattice site of clusters with s sites 
and b bonds by (ns ,b ) .  At low density the principal moments of interest are 

where the summations are taken over all s and b. At low densities all the above 
moments can be expanded in powers of p. For site problems p denotes the probability 
that a site is occupied; for bond problems p denotes the probability that a bond is 
occupied. 

For the zeroth moment we shall write 
CO 

m, = K (  p )  = krpr. (1.2) 
r = O  

The coefficients in this expansion have been studied in detail by Essam and Sykes 
(1966) for both site and bond mixtures. Notice that (1.2) determines two different 
functions and two distinct sets of coefficients; one for site mixtures, the other for bond 
mixtures. No confusion should arise since we shall treat the two problems separately 
later. 

At low densities the first-order moments all reduce to finite polynomials in p :  
(site problem) 
(bond problem) 

(site problem) 
(bond problem) 

(1.3) 

(1.4) 

where in (1.4) z denotes the coordination number of the lattice. (We follow the usual 
convention of working per lattice site for both site and bond mixtures.) 

The mean size of clusters at low densities can be defined in various ways and is 
usually related to the expansion of one of the three moments: 

The first moment (1 .5)  is the one usually studied for site mixtures; for these the mean 
size is defined to be the expected number of sites connected to an occupied site: 

S S S (  P )  = mss/P. (1.8) 
For bond mixtures the mean size studied in I*-IV* is defined as the expected number 
of bonds connected to an occupied bond: 

We shall derive expansions for the mean size by sites; for bond problems this function 
is identical with m,, of ( l S ) ,  since now all the sites are treated as occupied and m, = 1 .  

The cross-moment (1.6) can be used to expand the expected number of bonds 
connected to an occupied site or, alternatively, the expected number of sites connected 
to an occupied bond. The former is the simpler concept and for bond mixtures the 
corresponding mean size is identical with &b. 

sbb(p)  = mbb/fzp. (1.9) 
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To derive expansions for the moments (1.1) we follow HI** and generalise the 
concept of perimeter polynomials of I*-IV* by writing 

(1.10) 

(1.11) 

where q = 1 - p  and the polynomial on the right-hand side summarises the average 
environmental situation for all clusters with s sites and b bonds. Notice that (1.10) 
and (1.11) define different functions; the clusters summarised in (1.10) are strong 
embeddings, those in (1.11) are weak embeddings. 

We shall not develop the general theory of the polynomials Ds,b for the site problem 
since we have made no application of it. Although bond problems can be treated as 
site problems on a suitably defined covering lattice, there exists no simple equivalence 
between sites and bonds; if a cluster has s sites it must have (s  - 1) or more bonds; if 
a cluster has b bonds it must have ( b +  1) or fewer sites. As we show below, when we 
introduce the concept of a balance table, this last condition can be usefully exploited 
for bond problems. 

2. Site problem: perimeter polynomials and balance tables 

In this section we consider the site problem separately. Series expansions for the mean 
size of clusters, defined by (1.8), are given in I*-IV*; perimeter polynomials 0, (see 
below) are first obtained for all clusters through some number, N, of sites; direct 
expansion then yields the expansion of mss through p N .  Further coefficients can then 
be added by the procedures we now describe; for an elementary introduction reference 
should be made to I*. 

For the purpose of this section we particularise to the site problem and denote the 
expectation of a cluster of size s (by sites) by (ns); we follow I* and write 

(Us> = Ds(q)pS  (2.1) 
where 0, is now the simple site perimeter polynomial which corresponds to the 
contraction of the more general D s , b  defined by (1.10): 

D s ( q )  = D s , b ( q ) .  (2.2) 
b 

From these the mean number of clusters can be expanded in an ascending array: 

(2.3) 

. . .  . . .  . 
At low densities we have the formal relation of (1.3) from which it follows that 

N 

i a i , N = O  if N >  1. (2.4) 
i = l  

Because of this condition the set of contributions  CY^.^, . . . , a N.N is conveniently 
called the Nth  balance table. We denote the total number of connected clusters of n 
sites by An and note the trivial relation: 

AN = a N , N .  (2 .5 )  
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If the perimeter polynomials are known through DN, then, by application of ( 2 . 4 )  to 
the ( N +  1)th balance table, (TN+1,N+1 and therefore A N + I ,  k N + ,  and are deter- 
mined. 

In many cases the low density expansion for the mean number, ( 1 . 2 ) ,  can be derived 
independently by special methods (Essam and Sykes 1966, III*). Then, still assuming 
that N perimeter polynomials are available, we can first evaluate the quantities 

N N N 

i = l  i= 1 i = l  
a i ,N+2=770 iai ,N+2= 71 i2ai ,N+2 = 772 ( 2 . 6 )  

and then by application of ( 2 . 4 )  to the ( N  + 2)th balance table, together with the relation 
N+2 

a i , ~ + 2 = k ~ + 2  
i = l  

( 2 . 7 )  

we can determine the last two elements of the balance table and the next mean size 
coefficient. Explicitly: 

a N+I,N+2 = ( N + 2 ) (  k N + 2 -  70) 

a N+2,N+2= -71 - ( N +  l ) ( k N + 2 -  70) ( 2 . 8 )  

as+2= 7 2 - ( 2 N + 3 ) 7 1  - ( N + l ) ( N + 2 ) ( k N + 2 -  70). 

In summary: a knowledge of N perimeter polynomials, together with kN+2,  deter- 
mines AN+2 and agC2.  If A N + *  i s  independently known, it serves as a check on the 
data; alternatively if AN+2 is known and kN+, is not known we may use the relations 

If we further suppose that the mean number expansion is available through kN+,  and 
also that the total number of clusters AN+, is known, then, by first evaluating 

N 

a i , N + 3 = 5 0  
i=l  

we can exploit the relations 

N c i a i , N + 3 = 5 1  
i = l  

N 

i 2 f f  i,N+3 = 5 2  
i = l  

a N + l , N + 3 =  51 - ( N + ~ ) ( L o - ~ N + ~ ) + A N + ~  

a N + 2 , N + 3 =  l ) ( 5 0 -  k N + 3 ) - 2 A N + 3  

a N+3,N+3 =  AN+^ 
to add a further coefficient to the second moment. Explicitly: 

( 2 . 1 0 )  

( 2 . 1 1 )  

3. Site problem: specific applications 

The extent to which the results of the previous section can be usefully applied varies 
from lattice to lattice. In two dimensions, because of the special methods (Essam and 
Sykes 1 9 6 6 )  that can be used to derive the mean number expansion ( 1 . 2 ) ,  series of 
sufficient length are usually available to enable the results ( 2 . 9 )  to be exploited. The 
expansions given by Sykes and Glen (I*) for the triangular, simple quadratic and 
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honeycomb lattices were all extended in this way. More recently Margolina et a l ( l983)  
have obtained a further perimeter polynomial (D15) for the triangular lattice; using 
the value k,, = -1194 extracted from the data of Sykes et a l  (III*), they obtained the 
value AI, = 12 866 153 748. Using their data and (2.9) gives an extra coefficient for the 
mean size defined by (1.5) and (1.8): 

af; = 2383 596 (triangular lattice). (3.1) 

To exploit (2.12) when N perimeter polynomials are available requires the number of 
connected clusters with ( N + 2 )  sites; Sykes and Glen (I*) concluded that direct 
enumeration of the total number of clusters, although faster than the direct enumeration 
of perimeter polynomials, was not fast enough to make this procedure worthwhile; it 
would in general be more efficient to derive the next perimeter polynomial instead. 
Their conclusion still holds but, in one instance, because of the very large amount of 
computer time used by Redelmeier (1981) the extra total is already available; using 
his A,, = 22 964 779 660 for the simple quadratic lattice and the value k,, = 9894, 
obtained by the methods of Essam and Sykes (1966) and III*, equation (2.12) yields 
the extra coefficient: 

a&= -702 592 (simple quadratic lattice). (3.2) 

That this coefficient would be negative was predicted by Sykes et a1 (1973). 
In three dimensions the methods available for the independent derivation of the 

mean number expansion are more restricted. The theory of strong K weights (Essam 
and Sykes 1966) requires an exhaustive listing of strong embeddings of star graphs 
which is quite difficult to provide. 

For the simple cubic lattice we have used the mutually consistent results k13= 
-13 788 and A13 = 3322 769 321 of V** to derive 

(simple cubic lattice). (3.3) a s s  - 13 - 10 375 770 

This result corrects a small error in the value given by Gaunt et al (1976). 
Direct expansion of K (p )  for the body-centred cubic lattice is more difficult. Sykes 

et a1 (IV*) give the perimeter polynomials through Dlo; using the data of IV* and 
(2.12) we obtain the new results 

k,, = 86 432 
a s s  - 

k,3 = -433 603 
(body-centred cubic lattice). (3.4) 

af; = 203 033 932 12 - 40 355 260 

The derivation of high density expansions for site problems is not advanced by the 
above observations; all the available expansions are summarised by Gaunt and Sykes 
(1983). 

4. Bond problem: perimeter polynomials and balance tables 

In this section we treat the bond problem separately. It is possible to treat the bond 
problem as a site problem on the covering lattice; simple bond perimeter polynomials 
can be defined and extra coefficients then added by the methods of § 2; however, extra 
information can be obtained by a direct study of the more general perimeter polynomials 
(1.11). 
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Suppose the perimeter polynomials D s , b  of (1.11) are known for all s S N ;  then 
there can be no clusters with fewer than N bonds whose perimeter is not known. 
Consequently the ( N  - 1)th balance table, which we now take to be all the contributions 
to the coefficient of p N - ’  from all the ( n s , b )  when the right-hand side of (1.11) is 
expanded for each, is complete. Writing as a generalisation of (2.3) 

(4.1) 

the partial contribution to the moments from the incomplete Nth  balance table can 
be obtained as 

z A s , b , N  = 7 0  ~ S A S , ~ , N  = 77, x b A r , b , ~  = q b  

c s 2 A s , b , N  = v s s  1 S b A 5 , b , N  = T S b  x b 2 A s . b , N  = T b b  (4.2) 

where the summations are taken over all s and b with s S N. We denote the number 
of connected clusters of s sites and b bonds by Bs,b and note the trivial relation 

B N , N - ~  = A N,N-i ,N- i .  (4.3) 

NOW using (4.2) with either (1.3) or (1.4) we obtain BN+l ,N  and also 

k~ = TO+ B N + ~ , N  

In most cases the mean number expansion (1.2) can be derived by independent methods 
(Essam and Sykes 1966). Then, still assuming that all the perimeter polynomials are 
known through s < N, the partial contributions to the ( N +  1)th balance table that 
corresponds to replacing N by N + 1 on every left-hand side of (4.2) without increasing 
the range of summation, and which we denote by lo, ls, 5 6 ,  lss, l s b ,  566 respectiveiy, 
together with the value of k N + l ,  determine 

B N + 2 , N + l  = ( N + 1 ) l o  - 5 s  - ( N + 1 ) kN+l  

B N + 1, N + 1 = -60 + 5 s  - l b  + k N + 1 

a %+ = ls5 + ( N  + 1) ( N  + 2) (LO - k N + l )  - (2  N + 3 1 5 s  (4.5) 

a$+1 = l s b  + ( N +  1 ) * ( l o -  k N+1) - ( N +  1 )(ls + l b )  

abNb+l= 5 b b + N ( N 3 . 1 ) ( 1 0 - k N + 1 ) - ( 2 N + 1 ) l b .  

In summary: a knowledge of the perimeter polynomials through s N, together 
with k N f l ,  determines the (N+l) th  coefficient for all three moments and also the 
total numbers of clusters with ( N  + 1) bonds of cyclomatic number 0 and 1 respectively. 
This last result is an especially useful one: the methods described in III** for the 
derivation of perimeter polynomials provide the general perimeter polynomials quite 
naturally as a site grouping; by using the above relations the total number of bond 
clusters through ( N +  1) can be obtained with details of their site content. This 
technique was used in II** to complete the values of &(x) and B l , ( x )  for the 
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body-centred cubic and again in V** to complete the values of BI3(x) and B14(~)  for 
the simple cubic. 

5. Bond problem: specific applications 

The results (4.5) of the previous section, combined with the general perimeter poly- 
nomials grouped by sites obtained by the methods described in III** for the 
body-centred cubic lattice and in V** for the simple cubic lattice, enable the low 
density expansion for the three moments (1.5)-( 1.7) to be obtained through the 
coefficient of pI4.  We give these coefficients in table 1. 

The general perimeter polynomials also enable a significant number of terms to be 
added to high density expansions. The expansion for the mean number of clusters, 
KBCC, on the body-centred cubic lattice is given by Gaunt and Sykes (1983), appendix 
1, through q4'. (If the null-cluster convention is adopted the term q8  should be prefixed 
to their expansion.) By expanding the DT-D?, obtained in III** and including some 
contributions from clusters with more than 13 sites we have added 14 further coefficients: 

KBCC=q8+4q14-4q15+. . .+1388 810q48-1301 132q49 

+ 2048 224q50 - 3898 O76q5l + 7880 628q5* 

- 15 330 876q53+21 794 812q54-23 218 900q55 

+29 208 826qS6-51 146 912q5'+95 338 772q5' 

-181 108 576q59+299 949 212q60-385 858 764q6' 

+. . .  . (5.1) 

Gaunt and Sykes (1983) also give the expansion for the bond percolation probability 
Picc,  defined as the probability that a given occupied bond lies in the infinite cluster, 

Table 1. Coefficients for second moment expansions at low densities (bond problem). 

~~ 

Body-centred cubict Simple cubic 

r a? a :' a:' a:' a :b a:' 

1 8 8 4 6 6 3 
2 56 56 56 30 30 30 
3 392 392 392 150 150 150 
4 2 504 2 552 2 600 690 702 714 
5 16 232 16 520 16 808 3 246 3 294 3 342 
6 99 152 101 888 104 648 14 250 14 622 14 994 
7 621 608 636 920 652 616 64 770 66 210 67 686 
8 3 698 942 3 816 656 3 936 416 277 734 286 074 294 522 
9 22 752 088 23 396 648 24 062 048 1239322 1271490 1304682 

10 132 890 344 137475328 142163312 5 222 538 5 792 710 5 566 038 
11 808 503 496 833 161 984 858 717 856 23 053 710 23 703 378 24 376 170 
12 4652182268 4821607024 4995332464 95780740 99078330 102447990 
13 28147030544 29042197232 29972440432 420269004 432707748 445619106 
14 159780956360 165846265328 172075348544 1724854200 1786662060 1849957488 

t The entry for a!,$ corrects a small error in Gaunt er al (1976). 
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and to this we have likewise added a further 14 coefficients: 
Pkcc= 1 -2Mb/Zp= 1 - qI4 -14qZ0+. . . -  1253 651q4' 

+ 1633 854q49-3338 428qso+6150 082q5' 

-12002 184q52+21 001 056q53-26 102 578qS4 

+29 661 75Oqs5-49 806 32Oqs6+93 109 946qS7 

- 167 927 241q5'+301 733 826qS9-454 706 O45q6O 

+565744398q6'+.. .  . (5.2) 

In (5.2) Mb denotes the appropriate high density analogue of ltlb for finite clusters. 
If the site-weighting convention is adopted it is more natural to study the corresponding 
site percolation probability Pkcc defined as the probability that a given site lies in the 
infinite cluster: 

P&= 1 - M, (5.3) 

and we give this expression through q6' in appendix 1. We have also extended the 
expansion of the second moment by bonds given by Gaunt and Sykes (1983) which 
for consistency we denote by xbb and obtain: 

~ $ ~ = 4 q ' ~ - 4 q ' ~ + .  . .+85 761 588q4'-113 562380q49 

+ 204 796 872qS0 - 385 245 024q5' + 703 838 400q5' 

- 1219 752 264qS3+ 1788 156 568q54 

- 2382 368 7O4qs5+ 3727 278 288q56 - 6727 066 224qS7 

+12017966 196q58-20817051 O84qs9+33 231 499436q60 

-47 679 991 988q6' + . . . . (5.4) 

We give the expansion for the second moment by sites, x&,  through q6' in appendix 
2. 

For the simple cubic lattice we have added a further five coefficients to the 
expansions given by Gaunt and Sykes (1983): 

Ksc = q6+ 3q'O- 3q" + . . . -2465 541q37+4197 528q3'-6603 214q39 

+ 12 030 O48q4O-23 763 903q4' 

+. . .  ( 5 . 5 )  

P& = 1 - q" - lOqI4+. . . + 5225 024q37 - 8633 109q" 

+14942 110q39-30 199449q40+59412948q4' 

+...  (5.6) 

X&=3q"-3q"+. . .-242 839461q37+441 301 6S9q38 

-802060923q39+1583 927 781q40-3173 009 517g4' 

+ . . .  . (5.7) 
We give the expressions of PSC and x &  through q4' in appendices 1 and 2 respectively. 
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Appendix 1. Expansions for the site percolation probability for the body-centred and 
simple cubic lattices 

P i c c =  1 -q8-8q'4+8q's-84q20+168q21-84q22-48q24 

- 528q26+2064q2'-2364q28+816q29-900q30+ 156Oq3l 

-3112q32+ 17 560q33-36912q34+30448q35-17 014q36 

+31 392q37-51 328q38+ 150 336q39-428 676q40+607 304q4' 

-479 768q4'+548 280q43- 1055 172q'+2064 272q45 

-4923 372qM+8968 792q47- 10 031 712q48+9941 088q4' 

- 16429 748qS0+31 557 632q5'-640O6974qs2+125 015 136qS3 

- 179 526 94Oqs4+ 197 079 480q5'-260 507 334qS6 

+466 001 256qS7 - 872 212 792qs8+ 1663 589 824q5' 

-2779049 638q60+3641 311 608q6'+. . . 
P&= 1 - q6-6q'O+6q1' -45q'4+90q's- 57q16 

-260q'*+9O0q1'- 12O0q2O+572q2'- 1098q22 

+6360q23 - 14 332q24+ 15 444q2'- 12 450q26 

+39 366q2'- 124284q28+218 028q2'-256 649q30 

+394470q3'- 1010484q32+2176 628q33 

-3455 013q34+5239 0O8q3'-l0 100470q36 

+20506812q37-35739483q38+59 103 742q3' 

- 112 279 O41q4O+224 644 212q4' +. . . . 

Appendix 2. High density expansions for the second moment by sites for the body- 
centred and simple cubic lattices 

,y&c= q 8 +  16qI4- 16q's+252q20-504q2'+252q22+ 192q24 

+2112q26-8256427+9516428-3264429+4500430 

- 7800q3' + 15 722q32 - 87 800q33 + 186 072q34 
- 154688q35+94778q36- 188 352q37+311 784q38 

-908 400q3'+2595 258q40-3711 800q4'+3043 048q42 

- 3782 952q43+7452 324qM- 14 644 336q4' 

+ 34 901 388q46 - 63 85 1 304q4' + 72 754 608948 

-76 396 656q49+ 132 075 324q50-255 875 272q'' 

+ 520 884 846qS2 - 1021 901 664qS3+ 1483 792 940q54 

- 1681 198 80Oqs5+2332 150 178qS6-4254281 880q" 

+7995 286 856qS8- 15 317 533 168q5'+25 828 803 698q60 

-34 506 131 544q61 +. . . 
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x&= q6+ 12q'O- 12q"+ 135q14-270q'5+ 183qI6+ 1040q'8 

- 360Oql9 + 5O40q2O - 2528q2' + 5598q22 

- 31 800q23 + 74 124qZ4 - 83 664q25 + 74 748q26 

-239 488q2'+765 288q2'- 1390 884qZ9+ 1748 315q30 

-2838 720q3'+7287 936q32- 15  958 108q33 

+26 519 679q34-42 634 812q3'+84 119 742q36 

- 171 513 372q3'+306 443 793q3'-532 935 148q39 

+ 1053 827 3O7q4O-2135 689 788q4'+. . . . 
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